Симбиогенетическая концепция происхождения эукариотной клетки.

Согласно современным представлениям, наша планета сформировалась около 4,5 млрд. лет назад. Первоначально Земля была сухой, вода появилась в результате дегазации недр - выхода в атмосферу водяного пара и газов, составлявших древнюю атмосферу. По мере конденсации водяного пара появлялись сначала мелкие лужицы, которые понемногу становились все больше и больше. Однако понадобилось 500-700 млн. лет для того, чтобы на Земле возникли более или менее крупные водоемы. Затем в результате оседания на дно водоемов различных частичек образовались и осадочные породы.

Древнейшими осадочными породами считаются графитизированные сланцы, возраст которых предположительно составляет около 3,8 млрд. лет. В этих породах обнаружены признаки некогда существовавшей жизни - следы деятельности организмов, осуществлявших процесс фотосинтеза. Дело в том, что в органическом веществе, созданном в процессе фотосинтеза, соотношение изотопов углерода С12 и С13 меняется в пользу более легкого изотопа С12. И что бы с данным веществом ни происходило в дальнейшем, такое соотношение в нем будет сохраняться. Углерод в сланцах - явно органического происхождения. Окаменевшие клетки, сходные с современными цианобактериями, обнаружены в породах возрастом 3,5 млрд.

Среди прокариот немало фотосинтезирующих форм, прежде всего это часто встречающиеся в современной биосфере цианобактерии. Они (или родственные им организмы) были широко распространены и в далеком прошлом. Геологические постройки, созданные древними цианобактериями - строматолиты, - нередко обнаруживаются в древнейших слоях земной коры, соответствующих архею и раннему протерозою. Начавшаяся около 4 млрд. лет назад деятельность фотосинтезирующих и других автотрофных прокариот имела несколько важнейших последствий.

Первое связано с изменением атмосферы Земли. Дело в том, что в древности она была практически бескислородной. В результате фотосинтеза молекулярный кислород стал выделяться в атмосферу, но сначала связывался известняками, железом и другими минералами. Когда большая часть свободных минералов окислилась, кислород, наконец, начинает накапливаться в атмосфере.

Около 2 млрд. лет назад содержание кислорода в атмосфере достигло 1% и продолжило повышаться. Для анаэробных организмов повышение концентрации кислорода было катастрофой, поскольку кислород - очень агрессивный элемент, он быстро окисляет и разрушает органические соединения. Поэтому им пришлось прятаться.

Второе важное следствие деятельности автотрофных прокариот - накопление залежей органического вещества. Биотический круговорот веществ в биосфере, состоящей исключительно из прокариот, был очень несовершенен. Как известно, прокариоты принципиально не способны к заглатыванию своих жертв, потому что у них отсутствуют актин и миозин - белки, обеспечивающие подвижность цитоплазмы у эукариот. Благодаря им при захвате пищевых частиц (фагоцитозе) и формировании пищеварительных вакуолей формируются псевдоподии (временные цитоплазмические выросты, служащие для передвижения и захвата пищи). Прокариоты этого делать не могут. Гетеротрофные бактерии выделяют ферменты во внешнюю среду, происходит своего рода "наружное переваривание" (экзоферментация), а низкомолекулярные продукты всасываются через цитоплазматическую мембрану. Все это обусловило низкую скорость разложения биомассы, созданной автотрофными прокариотами. Вода, выделившаяся с вулканическими газами, проливалась на поверхность планеты. Этот процесс сопровождался мощными электрическими разрядами, которые способствовали синтезу сложных органических молекул. Неглубокие водоемы, образовавшиеся около 4 млрд. лет назад. В них обитали первые живые организмы, близкие к современным цианобактериям.

Усовершенствовать биологический круговорот, ускорить возврат в него углерода и других биогенных элементов могло только появление микроскопических аэробных хищников, которые заглатывали бы бактерий, переваривали их и возвращали в биосферу углерод (желательно в виде СO2), азот (в виде соединений аммония), фосфор и другие биогенные элементы. Такими хищниками стали первые эукариотные организмы.

Хищники (актин и миозин)
Эукариоты обладают двумя универсальными белками - актином и миозином, обеспечивающими разнообразные типы клеточной подвижности: амебоидную активность, движение органелл внутри клетки, а у высших организмов - мышечные сокращения. Актиново-миозиновая система позволяет образовывать псевдоподии, захватывать ими жертву и формировать пищеварительные вакуоли. Приобретение актиново-миозиновой системы позволило эукариотам питаться путем фагоцитоза, активно захватывая крупные пищевые частицы.

Теория симбиотического происхождения митохондрий и жгутиков
Способность к фаготрофному (наличие актина и миозина) питанию предопределила возможность появления у эукариот внутриклеточных симбионтов. Эукариотная клетка возникла в результате симбиоза первичного амебоидного организма с различными прокариотными и эукариотными существами. Данное положение легло в основу так называемой концепции симбиогенеза, которая стала одной из парадигм современной биологии.

Концепция симбиогенеза была сформулирована еще в начале ХХ в. двумя российскими биологами - К.С. Мережковским и Ф.С. Фаминицыным. Однако их идеи в то время не получили широкого распространения. К идее симбиогенеза биологи вернулись только в последние десятилетия ХХ в., когда накопилось множество данных по структуре клеток эукариотных организмов. Современные положения симбиогенетической концепции разработаны в трудах американского биолога Линн Маргулис и отечественных исследователей А.Л. Тахтаджана и И.М. Мирабдуллаева. Согласно нынешним представлениям, симбиотическое происхождение имеют такие важные органеллы эукариотной клетки, как митохондрии.

Жгутики и реснички эукариотных клеток тоже считаются "потомками" симбиотических прокариот. Многие бактерии (например, вибрионы) имеют жгутики (так называемые "флагеллы") - особые образования, содержащие белок флагеллин. Но ни по строению, ни по химическому составу они не имеют ничего общего со жгутиками и ресничками эукариот. Внутри жгутика или реснички эукариот проходят правильно расположенные микротрубочки, состоящие из особого белка - тубулина (который никогда не встречается у прокариот). Располагаются они следующим образом: в центре проходят две одиночные микротрубочки, а по периферии - 9 дублетов. Микротрубочки жгутика присоединяются к базальному тельцу - кинетосоме, которая состоит из 9 триплетов микротрубочек. Даже если жгутики исчезают, кинетосомы остаются и функционируют в качестве центриолей. Например, все клетки (в том числе и безжгутиковые) многоклеточных животных обладают двумя рядом расположенными центриолями. Именно они организуют веретено деления, благодаря которому достигается правильное распределение хромосом в митозе и мейозе.

Жгутики не отделены от цитоплазмы мембранами, никаких препятствий для перехода белков из цитоплазмы в жгутик нет, поэтому большинство белков жгутика кодируются в ядре клетки. В то же время внутри базального тельца жгутика есть маленькая кольцевая молекула ДНК, которая содержит несколько генов, контролирующих формирование базального тельца. Дело в том, что центриоли (базальные тельца) не возникают в клетке на пустом месте. Перед делением две центриоли расходятся и рядом с каждой из них формируется новая. Таким образом, для синтеза очередного органоида необходима "затравка" в виде старого.

Предполагается, что предками жгутика были бактерии, напоминающие современных спирохет, подвижных бактерий, чьи узкие спирально закрученные клетки быстро движутся, как бы ввинчиваясь в пространство. Правда, сами они никак не могли быть предками жгутиков: в них нет микротрубочек, а тонкое строение совершенно иное. Но это вовсе не означает, что в далеком прошлом не было других спирохетоподобных организмов, которые и стали предком эукариотного жгутика. По-видимому, его прародители сначала были экзосимбионтами, то есть прикреплялись к цитоплазматической мембране примитивного эукариота снаружи (бедняге долго наверное пришлось просидеть, чтобы прирасти к клетке хозяина). Симбионт использовал для своего питания выделяемые хозяином метаболиты, а взамен благодаря своей локомоторной активности способствовал его быстрому (по сравнению с формированием псевдоподий) перемещению. Именно такое взаимодействие сформировалось между спирохетами и некоторыми крупными простейшими.

Происхождение эукариотных растений

Первичные эукариоты были одноклеточными животными. Они питались, захватывая и переваривая другие микроскопические организмы. Одним из направлений их эволюции стало приобретение фотосинтезирующих симбионтов, которые превратились в органеллы, обеспечивавшие синтез органических веществ из углекислого газа и воды за счет энергии солнечного света. Этот путь привел к появлению различных групп эукариотных растений, то есть автотрофных фотосинтезирующих организмов. Они не родственны друг другу и возникли в результате симбиоза хищных протистов (простейших или их колоний) с различными фотосинтезирующими организмами.

В нескольких случаях симбионтами хищных эукариот стали цианобактерии - сине- зеленые водоросли, самая распространенная (по крайней мере в современной биосфере) и, возможно, самая древняя группа фотосинтезирующих прокариот. Их потомками считаются фотосинтезирующие органеллы (хлоропласты) красных водорослей. Они окружены только двумя мембранами, имеют собственную кольцевую ДНК и рибосомы прокариотного типа и содержат типичные для цианобактерий хлорофилл "а" и специфические пигменты цианобактерий - фикобилины.

Хлоропласты зеленых ворослей (хлореллы, хламидомонады, вольвокса и др.) – также считаются потомками фотосинтезирующих прокариот. А именно - свободноживущих бактерии с хлорофиллами "a" и "b" - представителей особой группы прохлорофитов - Prochloron и Prochlorotrix.

Хлоропласты золотистых, диатомовых и бурых водорослей содержат хлорофиллы "а" и "с" и почему-то окружены 4 мембранами. Считается, что они произошли от криптомонад. Криптомонады - небольшой группы жгутиконосцев, хлоропласты которых тоже имеют хлорофиллы "а" и "с", окружены 4 мембранами, причем между второй и третьей имеется маленькое эукариотное ядро - нуклеоморф, а внутри пространства, ограниченного последней, четвертой мембраной находится кольцевая ДНК. Такое строение позволяет предполагать, что хлоропласты криптомонад возникли в результате двойного симбиоза. Сначала некий хищный протист приобрел в качестве симбионта золотистую бактерию с хлорофиллами "а" и "с", а потом сам стал симбионтом криптомонады. В хлоропластах бурых, диатомовых и золотистых водорослей нуклеоморфа уже нет, хотя они по- прежнему окружены 4 мебранами, что говорит о более глубокой интеграции симбионта и хозяина.

Последнее изменение: Saturday, 24 October 2015, 19:05